Multiple instance learning: A survey of problem characteristics and applications
نویسندگان
چکیده
Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag. This formulation is gaining interest because it naturally fits various problems and allows to leverage weakly labeled data. Consequently, it has been used in diverse application fields such as computer vision and document classification. However, learning from bags raises important challenges that are unique to MIL. This paper provides a comprehensive survey of the characteristics which define and differentiate the types of MIL problems. Until now, these problem characteristics have not been formally identified and described. As a result, the variations in performance of MIL algorithms from one data set to another are difficult to explain. In this paper, MIL problem characteristics are grouped into four broad categories: the composition of the bags, the types of data distribution, the ambiguity of instance labels, and the task to be performed. Methods specialized to address each category are reviewed. Then, the extent to which these characteristics manifest themselves in key MIL application areas are described. Finally, experiments are conducted to compare the performance of 16 state-of-the-art MIL methods on selected problem characteristics. This paper provides insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research.
منابع مشابه
بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملDifferent Learning Levels in Multiple-choice and Essay Tests: Immediate and Delayed Retention
This study investigated the effects of different learning levels, including Remember an Instance (RI), Remember a Generality (RG), and Use a Generality (UG) in multiple-choice and essay tests on immediate and delayed retention. Three-hundred pre-intermediate students participated in the study. Reading passages with multiple-choice and essay questions in different levels of learning were giv...
متن کاملبررسی رابطه سبکهای یادگیری، ویژگیهای شخصیتی و عملکرد تحصیلی دانشآموزان
This paper mainly attempts to investigate the relationship between learning styles, personality characteristics and the academic performance of high school students in the Eastern Bandpay of Babol township. This research is a survey research. Using a multiple stage sampling, 200 students were chosen. Applying Kolb Learning Style Inventory and NEO Five Factor Inventory, the main variables of thi...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملA Novel Horror Scene Detection Scheme on Revised Multiple Instance Learning Model
Horror scene detection is a research problem that has much practical use. The supervised method requires the training data to be labeled manually, which can be tedious and onerous. In this paper, a more challenging setting of the problems without complete information on data labels is investigated. In particular, as the horror scene is characterized by multiple features, this problem is formula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 77 شماره
صفحات -
تاریخ انتشار 2018